Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells

نویسندگان

  • Bo Zhang
  • Dong Wang
  • Yu Hou
  • Shuang Yang
  • Xiao Hua Yang
  • Ju Hua Zhong
  • Jian Liu
  • Hai Feng Wang
  • P. Hu
  • Hui Jun Zhao
  • Hua Gui Yang
چکیده

Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells.

When applied on the counter electrode of a dye-sensitized solar cell, functionalized graphene sheets with oxygen-containing sites perform comparably to platinum (conversion efficiencies of 5.0 and 5.5%, respectively, at 100 mW cm(-2) AM1.5G simulated light). To interpret the catalytic activity of functionalized graphene sheets toward the reduction of triiodide, we propose a new electrochemical ...

متن کامل

Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells.

Exploiting an alternative of the Pt-based counter-electrode materials for the triiodide reduction reaction has become a major interest in the fundamental research of dye-sensitized solar cells. Transition-metal selenides have recently been demonstrated as promising non-precious metal electrocatalysts for the triiodide reduction reaction. Herein, we prepared a series of transition-metal selenide...

متن کامل

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

Notable catalytic activity of oxygen-vacancy-rich WO(2.72) nanorod bundles as counter electrodes for dye-sensitized solar cells.

For the first time, nonstoichiometric WO2.72 was used as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). Oxygen-vacancy-rich WO2.72 nanorod bundles with notable catalytic activity for triiodide and thiolate reduction were prepared in this study. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) with WO2.72 nanorod bundles as CEs are superior compared with those o...

متن کامل

Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells.

A tungsten trioxide (WO₃) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO₃ composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013